
Browsing Pathways
Showing 51 -
60 of 605359 pathways
SMPDB ID | Pathway Name and Description | Pathway Class | Chemical Compounds | Proteins |
---|---|---|---|---|
SMP0000596 |
Quinapril Metabolism PathwayQuinapril (trade name: Accupril) belongs to the class of drugs known as angiotensin-converting enzyme (ACE) inhibitors and is used primarily to lower high blood pressure (hypertension). This drug can also be used in the treatment of congestive heart failure and type II diabetes. Quinapril is a prodrug which, following oral administration, undergoes biotransformation in vivo into its active form quinaprilat via cleavage of its ester group by the liver. Angiotensin-converting enzyme (ACE) is a component of the body's renin–angiotensin–aldosterone system (RAAS) and cleaves inactive angiotensin I into the active vasoconstrictor angiotensin II. ACE (or kininase II) also degrades the potent vasodilator bradykinin. Consequently, ACE inhibitors decrease angiotensin II concentrations and increase bradykinin concentrations resulting in blood vessel dilation and thereby lowering blood pressure.
|
|||
SMP0000601 |
Etoposide Metabolism PathwayEtoposide is a medication commonly sold as Vepesid, or Etopophos. It is a type of chemotherapy. It is used to treat many types of cancers, including nonlymphocytic leukemia and testicular cancer. Etoposide is semisynthetic and a derivative of the podophyllotoxins which is an epipodophyllotoxin. This substance is found in the root of the American Mayapple plant. The way this substance works is by inhibiting topoisomerase II, which inhibits DNA synthesis. This breaks the catalytic cycle of topoisomerase II, and after a while overwhelms the cell. This can cause a death pathway, killing the cancer cell. Etoposide is administered by a doctor, through intravenous infusion.
|
|
||
SMP0000608 |
Fluorouracil Metabolism PathwayFluorouracil (5-FU), sold under the brand name Adrucil among others, is a fluoropyrimidine anticancer drug. By injection into a vein, it is used to treat colon cancer, esophageal cancer, stomach cancer, pancreatic cancer, breast cancer, and cervical cancer. As a cream, it is used for actinic keratosis, basal cell carcinoma, and skin warts. Fluorouracil is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system . Fluorouracil exerts cytotoxic effects on the cell by direct incorporation into DNA and RNA as well as by inhibiting thymidylate synthase.
|
|||
SMP0000613 |
Omeprazole Metabolism Pathway (old)Omeprazole, sold as Prilosec. Losec and Zegerid, is a proton pump inhibitor (PPI) class drug that suppresses the final step in gastric acid production, and was the first proton pump inhibitor to e developed. In this pathway, omeprazole is taken orally and is oxidized in the stomach to form the active metabolite of omeprazole. This active metabolite then binds covalently to the potassium-transporting ATPase protein subunits, found at the secretory surface of the gastric parietal cell, preventing any stimulus. Because the drug binds covalently, its effects are dose-dependent and last much longer than similar drugs that bind to the protein non-covalently. This is because additional ATPase enzymes must be created to replace the ones covalently bound by pantoprazole. Omeprazole is used to manage gastroesophageal reflux disease, to prevent stomach ulcers, and can be used to help treat the effects of a H. pylori infection.
|
|||
SMP0000615 |
Pantoprazole Metabolism PathwayPantoprazole is a proton pump inhibitor (PPI) class drug that suppresses the final step in gastric acid production. In this pathway, pantoprazole is oxidized in the stomach to form the active metabolite of pantoprazole. This active metabolite then binds covalently to the potassium-transporting ATPase protein subunits, found at the secretory surface of the gastric parietal cell, preventing any stimulus. Because the drug binds covalently, its effects are dose-dependent and last much longer than similar drugs that bind to the protein non-covalently. This is because additional ATPase enzymes must be created to replace the ones covalently bound by pantoprazole.
Pantoprazole is used to manage gastroesophageal reflux disease, to prevent stomach ulcers, and can be used to help treat the effects of a H. pylori infection.
|
|||
SMP0000620 |
Lidocaine (Local Anaesthetic) Metabolism PathwayLidocaine exerts its local anaesthetic effect by blocking voltage-gated sodium channels in peripheral neurons. Lidocaine diffuses across the neuronal plasma membrane in its uncharged base form. Once inside the cytoplasm, it is protonated and this protonated form enters and blocks the pore of the voltage-gated sodium channel from the cytoplasmic side. For this to happen, the sodium channel must first become active so that so that gating mechanism is in the open state. Therefore lidocaine preferentially inhibits neurons that are actively firing.
|
|||
SMP0000628 |
Nicotine Metabolism PathwayNicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nicotinic acetylcholine receptors on dopaminergic neurons in the cortico-limbic pathways. This causes the channel to open and allow conductance of multiple cations including sodium, calcium, and potassium. This leads to depolarization, which activates voltage-gated calcium channels and allows more calcium to enter the axon terminal. Calcium stimulates vesicle trafficking towards the plasma membrane and the release of dopamine into the synapse. Dopamine binding to its receptors is responsible the euphoric and addictive properties of nicotine.
Nicotine also binds to nicotinic acetylcholine receptors on the chromaffin cells in the adrenal medulla. Binding opens the ion channel allowing influx of sodium, causing depolarization of the cell, which activates voltage-gated calcium channels. Calcium triggers the release of epinephrine from intracellular vesicles into the bloodstream, which causes vasoconstriction, increased blood pressure, increased heart rate, and increased blood sugar.
|
|
||
SMP0000633 |
Felbamate Metabolism PathwayFelbamate is metabolized in the liver. One route of metabolism consists of the hydroxylation to 2-hydroxyfelbamate or p-hydroxyfelbamate, which is catalyzed by CYP2E1 and CYP3A4. Moreover, felbamate can be transformed to 2-phenyl-2-propanediol monocarbamate. This metabolite is then converted to 3-carbamoyl-2phenylpropionaldehyde via alchol dehydrogenase 1A, which in turn can be transformed into three possible metabolites: atropaldehyde, 3-carbamoyl-2-phenylpropionic acid (catalyzed by the dimeric NADP-preferring aldehyde dehydrogenase), and 4-hydroxy-5-phenyltetrahydro-1,3-oxazin-2-one. The latter is further converted by the alcohol dehydrogenase 1A to 5-phenyl-1,3-oxazinane-2,4-dione, which is subsequently transformed to 3-carbamoyl-2-phenylpropionic acid.
|
|
||
SMP0000635 |
Valproic Acid Metabolism PathwayValproic acid (VPA) is metabolized almost entirely in the liver, via at least there routes: glucuronidation, beta oxidation in the mitochondria, and cytochrome P450 mediated oxidation. The glucuronidation of VPA is mediated by UGT1A3, UGT1A4, UGT1A6, UGT1A8, UGT1A9, UGT1A10, UGT2B7 and UGT2B15. The key CYP-mediated reaction of the VPA metabolic pathway is the generation of 4-ene-VPA by CYP2C9, CYP2A6 and CYP2B6. These three enzymes also catalyze the formation of 4-OH-VPA and 5-OH-VPA. Moreover, CYP2A6 mediates the oxidation of VPA to 3-OH-VPA. Inside the mitochondria, the first step of oxidation is the formation of (VPA-CoA) catalyzed by medium-chain acyl-CoA synthase, followed by the conversion to 2-ene-VPA-CoA through 2-methyl-branched chain acyl-CoA dehydrogenase (ACADSB). 2-ene-VPA-CoA is further converted to 3-hydroxyl-valproyl-VPA (3-OH-VPA-CoA) by an enoyl-CoA hydratase, crotonase (ECSH1) and then 3-OH-VPA-CoA is metabolized to 3-keto-valproyl-CoA (3-oxo-VPA-CoA) through the action of 2-methyl-3-hydroxybutyryl-CoA dehydrogenase. Another route of VPA metabolism in the mitochondria includes the conversion of 4-ene-VPA to 4-ene-VPA-CoA ester catalyzed by ACADSB, followed by a beta-oxidation to form 2,4-diene-VPA-CoA ester. The latter metabolite can furthermore be conjugated to glutathione to form thiol metabolites.
|
|
|
|
SMP0000640 |
Acetaminophen Metabolism PathwayAcetaminophen (APAP) is metabolized primarily in the liver. Glucuronidation is the main route, accounting for 45-55% of APAP metabolism, and is mediatied by UGT1A1, UGT1A6, UGT1A9, UGT2B15 in the liver and UGT1A10 in the gut. APAP can also by metabolized via sulfation, accounting for 30-35% of the metabolism. In the liver, this step is catalyzed by the sulfotransferases SULT1A1, SULT1A3, SULT1A4, SULT1E1 and SULT2A1. Moreover, APAP can also be activated to form the toxic N-acetyl-p-benzoquinone imine (NAPQI) under the mediation of CYP3A4, CYP2E1, CYP2D6 CYP1A2, CYP2E1 and CYP2A6.
|
|
|
Showing 51 -
60 of 62 pathways